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boson approach 
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lnstitut fiir ?leone der Kondensierlen Materie. Universitat Karlsruhe, Physikhochhaus, 
7500 KarisNhc, Federal Republic of Germany 

Received 1 November 1991 

AbstracL We determine the ground state phase diagram of the Hubbard model on 
the square lattice allowing for homogeneous spiral, antiferromagnetic, ferromagnetic 
and paramagnetic phases. 'lhis is oblained from a saddie-point approximation of a 
spin-rotation-invariant form of the slave bson representation introduced by Kolliar and 
Ruckenstein. W obtain vely g d  agreement in energy with exact diagonalization maleu- 
lations and, mnceming the magnetic structure, qualitative agreement with experimental 
data. 

1. Introduction 

Recently there has been a revival of interest in the magnetic properties of the large 
repulsive U Hubbard model, following the suggestion by Anderson (11 that the model 
should capture the essential physics of the cuprate superconductors. Earlier attempts 
to determine the magnetic phase diagram (for an OvewieiY see the book by Mattis [2])  
indicated the existence of antiferromagnetic order in the region of the phase diagram 
around half-filling and ferromagnetic order for intermediate density and large inter- 
action strength. Obviously, antiferromagnetic and ferromagnetic order compete at 
finite doping of the half-filled band. It is by now well established that there is antifer- 
romagnetic long range order, with a charge excitation gap, in the ground state of the 
Hubbard model with nearest-neighbour hopping on a two-dimensional square lattice 
at half-filling [3]. Several different approaches suggest that the anciferromagnetic or- 
der is destroyed upon doping. However, it is difficult to calculate the effect of mobile 
holes on a spin background in a controlled way. In the restricted HartreeFock ap- 
proximation (HFA) antiferromagnetic, ferromagnetic and ferrimagnetic phase regions 
have been found [4], with the AF region extending out to high doping levels. At 
larger interaction strength U,  where the Hartree-Fock approximation is expected to 
be less reliable, the Gutmiller variational approximation (GA) has been applied [5], 
with results qualitatively similar to Hartree-Fock The main differences in the phase 
diagram appear at low density, where HFA yields a ferromagnetic phase for sufficiently 
large U, whereas GA stabilizes the paramagnetic state for all U. AI1 these results show 
a region of phase separation (i.e. a mixture of two phases with different magnetic 
order and density) at larger doping levels. However, whether phase separation is a 
true property of the Hubbard model remains to be seen. Exact (numerical) quantum 
Monte Carlo calculations for systems of dimensions up to 8 x 8 have so far not shown 
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any sign of phase separation. Should it mm out that phase separation occurs in the 
ground state of the Hubbard model for some region of the phase diagram, this would 
signal the inadequacy of the approximations leading to the Hubbard model in the hrst 
place. A finite range interaction or possibly the infinite range Coulomb interaction 
term would have to be added to the Hubbard model in that case. Whether phase 
separation still occurs within such a more realistic model is an open question. 

We think it worthwhile to explore the possibility of stable translation-invariant 
ground states of the Hubbard model. The tendency towards phase separation is 
clearly related to the competition of the antiferromagnetic exchange interaction de- 
rived from the Hubbard model and the kinetic energy of holes in the half-filled 
band, favouring ferromagnetic or paramagnetic spin background over an antiferro- 
magnetic one. The two tendencies may be at least partially satisfied by magnetic 
structures representing a compromise, such as incommensurate spiral magnetic states 
(sM), canted spin states (a), ferrimagnetic states (FIM), Linearly polarized spin den- 
sity waves (LSDW) and others. Among these, incommensurate spiral magnetic order 
is of particular interest, since incommensurate medium-rangcd magnetic order has 
been detected in La,-,Sr,CuO, by neutron scattering experiments r6, 71. Theoreti- 
cal support for spiral order comes from the analysis of Shraiman and Siggia [SI, who 
demonstrated the existence of interaction terms favouring spiral order in an effective 
classical field theory of doped antiferromagnets. The effect of quantum fluctuations 
in spiral phases has been considered in [9], and a double spiral structure has been 
identified as the lowest energy state there. Already in the Hartree-Fock approxi- 
mation a spiral magnetic solution is found to be lower in energy that the AF state 
for any finite doping [10-12]. Recently more complex solutions of the Hartree-Fock 
theory have been studied, such as domain-wall structures of various kinds [13-1q. 
Since the Hartree-Fock theory ceases to be controlled at larger values of U, and 
since the discussion of spiral order given in [SI is valid at most in the limit of low 
hole density, more generally applicable theories are greatly needed. In this paper 
we present results on incommensurate spiral magnetic states obtained within a slave 
boson mean-field theory comparable to the Gutmiller approximation. 

R Frkard and P W6lfle 

2. Spin-rotation invariant slave boson representation 

We consider the Hubbard model for electrons on the square lattice: 

with nearest-neighbour hopping matrix elements ta ,>  = - t .  Using a spin-rotation- 
invariant form [17] of the slave boson (sn) representation introduced by Kotliar and 
Ruckenstein [lS], the electron operator ci+ is expressed in terms of pseudofermion 
operator f;,? and slave boson operators ei, di, pi,&, p = 0 ,  1 , 2 , 3  for the empty, 
doubly and singly occupied sites, as 
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and 

Here the r, are the Pauli matrices, including the unit matrix ( p  = 0), p is the time 
reversed operator p, and the underbar denotes 2 x 2 spin matrices. The projection 
onto the physical subspace is implemented by a set of constraints. For details of the 
representation we refer to a separate publication [19]. 

The partition function of the Hubbard model may be expressed as a path integral 
over coherent states of the slave bosons 

where the bosonic and fermionic parts of the action are given by 

and 

SF = Trln [(a, - P t Pio)6,,,, + Pi . ~.7,@<16i,j f t i , j  zz,r,,gzj,o,,ot } (7) I 0 1  

In the expression for SF 7t denotes a tface Over time, space and spin. The five 
slaw boson fields e , p , , p  are real valued and are integrated like radial parts of 
complex fields, i.e. &@= d e ? .  . ., and so forth, whereas a,Po,P are integrated along 
the imaginary axis from -iw to ico. The boson d representing doubly occupied 
sites is the only complex field as discussed in [19, 201. In SB, h denotes an applied 
magnetic field and in S F p  is the chemical potential. 

Saddle point approximations to (5) are obtained by replacing the Bose fields by 
their time averaged values. These values are determined by minimizing the corre- 
sponding mean-field energy FMF = - T l n  ZMF. A spiral magnetic state is character- 
ized by a magnetization vector varying in space as 

Mi = MlE; (8) 

where the unit vector lE; forms a spiral structure, e.g. 

lEi = (cos +;, sin #i, 0) (9) 

with the site dependent rotation angle 

G i = Q . R i  n , = a ( n l , n 2 ) .  (10) 

The simplifying feature of this type of structure is that the length of the magnetization 
vector is uniform in space, only the direction varies. The spiral state is completely 
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defined by the wavevector Q. Limiting cases are the antiferromagnet with Q = 
r / a (  1 , l )  and the ferromagnet where Q = 0. 

The spatial variation of the mean-field values of the Bose fields is dictated by the 
form of M,.  All quantities transforming as vectors in spin space must show the same 
variation. Hence 

R Frkard and P WtYe 

P, = P% Bi = m, (11) 

whereas the scalar bosons e , d , p ,  and a,po are taken to be uniform in space. 

lattice site, 
In terms of the eigenvalues A, and eigenvectors xzk of the matrix p -I at each 

A, = Po + U P  (12) 

the matrix .zi may be expressed in terms of its eigenvalues as 

ri = f xYx:tLi,v(eL + dX- , )R , , - ,  
" Z i l  

where 

I,,," = [l - d 2  - f ( p o  + 
R :,U = [l - e' - ;(Po + ~ p ) ~ ] - ' / ~ .  

Explicitly, one obtains 

with 

zj: = B, L, R- + B- L-  R ,  

and 

(19) 
1 

B, = & P o ( e t d ) f p ( e - 4 1 .  

Next the trace in the expression (7) for SF has to be evaluated. The matrix quantity 
under the trace may be diagonalized by a Fourier transformation in space and time. 
Consider the matrix elements of the hopping term in the momentum rcpresentation: 
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substituting the expression (17) for 1 and performing the summation on R;,Rj  one 
finds 

(21) 

(Zi t ,+Z'! fk+Q)6(k-k ' )  " + " - ( t k + l k t Q ) 6 ( k - k 1 + Q )  
T k , k J  = ( z + r - ( l , + t , - ~ ) 6 ( r : - k ' - Q )  ( Z : t k  + ~ ! t k - ~ ) 6 ( k - k : ' )  

with 

t ,  = ~ t i , j e ' b . ( R ~ - R j )  = -2t(cosic,u+cosicyu) 6 ( k - k ' )  = x e i ( k - h ' ) ' R j .  
i , j  j 

(22) 

Including the chemical potential terms, the fermionic part of the action, (7) may be 
expressed as 

SF = T ~ T r k l n [ i w , 6 ( k - k ' )  -E, , , , ]  
W n  

where the quasiparticle energy matrix is defined by 

(24) 
e l ( k ) 6 ( k -  k') e 9 ( - k ) 6 ( k - k ' + Q )  

= ( e 2 ( k ) 6 ( k - k ' - Q )  - e , ( - k ) 6 ( k - k r )  

with elements 

e l ( k )  = ( Z : t k  f '? tk+Q)  + 00 e d k )  = z + ' - ( i k  + t k - Q )  f 0. (25) 

The energy matrix can be diagonalized easily since only pairs of k values are coupled. 
Writing out the eigenvalue equation 

E[&,,,, - 1E6(k - k')]+,, = 0 (26) 
IC' 

with 

then for each k a closed system of WO equations is obtained: 
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The mean-field free energy follows as 

R Frhard and P Wolfle 

F = - T z l n [ l  + e x p ( E , , , / T ) ]  t UdZ t a(ez t d 2  + p:  t p2 - 1) 
k , v  

- P O W 2  + P i  f PZ) - 2PPPO (3 1) 

with the saddle point values of the Bose fields being determined by the Euler- 
Lagrange equations 

a F / a e  = 2ae  + x ( a z E / a e ) U ,  = 0 
Y 

the density 

and the amplitude of the spiral spin density wave 
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3. Numerical solution of saddle point equations and results 

’RI solve the set of equations (32) and (33) we proceed as follows: for tixed spiral 
wavevector Q we eliminate the variables e, p, d,  a, Po, p at the price of introducing 
U, and m as unknown variables. The remaining equation for p ,  is 

(37) 

The variables e, p ,  d are obtained from the constraints, while a, Po,  P are given by 

Solving (37) at the point where U p  and m are stationary yields the saddle point. 
While this is easily achieved by the usual iteration technique for moderate interaction 
strength U, up to 101, one really has to solve the three stationary equations, in which 
the non-linearity becomes essential, for larger value of U. Working at a k e d  value 
of m, we are left with solving the two equations g, = 0 where 

g“ 5 U ~ ( { U p ) , 7 n , p 0 )  - U ,  v = il. (39) 

Starting from ( { U v ) , m ) ,  firstly determining p o  with (37), we then use (38) CO obtain 
e , p , a , p 0  and 0. Using the definitions (34) and (36) allows us to determine U:. 
The two equations gu = 0 are then solved by the ‘double bisection’ method. We can 
then determine m and finally look for the spiral wavevector which is minimizing F. 
We worked on a 98 x 98 lattice, and, since this method is particularly time consuming 
but not limited in principle, we restricted our calculations to U < 2Ot. 

Slave Boson Phase Diagram 

+ (1.1) 

lE.0 

12.0 

8.0 

4.0 

0.0 

a 

O I  

0.00 0.10 0.20 0.30 0.40 0.50 
6 

Figure 1. Ground state phase diagram of the Hub 
bard model. The AF state takes place at half-filling 
only. rile circles denote lhe phase boundary be- 
ween the ( 1 , l )  and ( 1 , O )  spiral phases, and the 
lriangles the boundary between Ihe ( 1 , O )  spiral 
and the paramagnetic phase. The c~osses represent 
the line of zero compressibility, separating single 
phase and phase separated slates. 
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In figure 1 we show the ( U . 6 )  phase diagram that we obtained by solving the 
saddle point equations (32) and (33) for 0 < U / t  < 20, thus completing a previous 
study [21]. It turns out that the spiral wavevectors which are minimizing the energy 
belong to two different families: either Q = ( x  - 6Q,)(1,1) (hereafter denoted by 
(1,1)), or Q = r(1,l)-  6Q,(1,0) (denoted by (1,O)). At half-filling we obtain 
the AF state as ground state. Upon doping it becomes immediately unstable towards 
a (1,l) spiral phase. For small doping this phase is characterized by a negative 
compressibility and is therefore unstable with respect to phase separation. Beyond 
a critical doping value indicated in figure 1 the compressibility of the (1,l) spiral 
phase turns positive and consequently this state is thermodynamically stable. This 
is in contrast to the HF solution, for which the regime of instability is much more 
extended [12, 221. When the doping is increased, the system undergoes a first-order 
phase transition towards a ( 1 , O )  spiral phase. The latter phase is characterized by 
a large magnetization around the transition (- 0.5) and a very small (and even 
vanishing) magnetic gap (as defined by the energy separation of the two bands Ek*). 
When the doping is again increased there is a second order phase transition to the 
paramagnetic state. It has to be noted that the ferromagnetic (F) state is absent 
within this parameter range. Extrapolating our data for larger U at a given density 
indicates that the F state shows up for U 2 401 for 6 - 1G%, and at higher values 
of U for other densities. 

~~ ~ ~ 

- 0 ' 5 ~ ~  -0.2 0.0 

)r 
?-0.7 0 U 

W 
& -0.4 
W 

-0.9 
U=Bt -0.6 

~~ -1.1 -0.8 
0.00 0.10 0 20 0.30 

6 
Figure 2 Comparison of ground slate energies ag2insr hole concenlralion obtained from 
lhe slave toson approximalion (SB) and Hams-Fock approximation (HP) with exact 
diagonalization data. (a) sB results for the pramagnelic slate (A), for the antitemmag- 
nelic state Qroken curve) and for [he spiral slate (C); HF results for the spiral stale (B); 
and exact diagonalization dara (crosses) lor U = 8 t .  (b) Shown are 58 results for the 
paramagnetic slate (A), for the fermmagnelic state (B). for the antiferromagnetic Stale 
(dashed N m e )  and tor the spiral stale (D); HF resulll for the spiral slate (C); exact 
diagonalization data (crosses) for U = 20t .  

0.00 0.10 0.20 0.30 
6 

in figure 2(a) we show the ground state energy for U = 8f as a function of the 
density as obtained from our slave boson calculation for the best spiral wavevector. 
We compare it with HartreeFock results [I21 and exact diagonalization on a 4 x 4 
lattice [U]. As we already pointed out for a smaller interaction strength, U = 4 t  [24], 
the a g " I t  between SB and HF is very severely affected upon doping. Contrary 
to this the agreement between SB and exact diagonalization is improved upon doping 
to be as good as showing a difference less than 4% for 6 > 15%, i.e. three holes 
and more in the 4 x 4 lattice. That the agreement is not so good around half-filling 
is not surprising since our saddle point approach does not account for the quantum 
fluctuations which are lowering the energy from - J  down to - -1.155 in the large 
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U limit. Nevertheless our results are within 8% of the exact diagonalization results 
at half-filling. 

Moreover, taking the spiral state into consideration allows a lowering of the 
energy from the AF state by as much as 25% for a doping of 8%. One can also 
notice that the spiral phase is stable over a much wider density domain than the 
antiferromagnetic phase. 

We carried out the same comparison for U = 201, as shown on figure 2(b).  The 
increase in the interaction strength leads to a bigger difference between slave boson 
and exact diagonalization results. The difference goes from - 15% at half-filling 
down to 7% when the doping is larger than 15%. We also included the ferromagnetic 
state in our comparison but figure 2(b) clearly shows that for U = 20t the slave 
boson mean-field approach, even in the paramagnetic state, gives lower energies. 

In figure 3 we display the ground state energies as functions of the density for 
U/t  = 4, S, 12 and IS. The tendency towards instability (i.e. negative compressibility) 
which is essentially absent for U / ?  = 13 and smaller, is first enhanced by increasing 
the interaction strength, and then, for U 2 141,  restricted to smaller and smaller 
doping regions. The tendency towards phase separation is enhanced by increasing 
U. Nevertheless it has to be noted that the doping domain where the energy can be 
lowered by the Maxwell construction is considerably smaller than the one obtained 
in the framework of mean-field theory 112, 221. :::::E U/t = 18 

h-0.6 

L 5  -0.8 

-1.0 

-1.2 
0.00 0.10 0.20 0.30 

6 
Figure 3. Slave boson ground Yale energies against hole mncenlration for U f t  = 4, 8, 
12 and 18. 

~~ U/t = 4 

0' 

2.0 

t .5 
0.00 0.10 0.20 0.30 

6 
Figure 4 Comparison of Ihe x mmponenl of the spital wavweclor againsl hole mncen- 
Vation oblained from the slave boson (SB) approach wilh Be experimental data. Shown 
are SB RSUIL~ Cor U I t  = 4. 8, 12 and 18; experimental data (cmsses). 
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Figure 4 shows the I component of the spiral wavevector as a function of the 
doping for U / t  = 4, 8, 12 and 18 (the jumps indicate the transition from (1.1) to 
(1 ,O) ) .  The departure of Q, from x is given approximately by 6Q, = 6 U / t  for 
small doping. For higher doping this linear behaviour in 6 is no longer true and Q, 
always saturates in the ( 1 , l )  regime, then jumps to the ( 1,O) regime and saturate 
again. Therefore the F state, as well as the Q = (0,s) state, which occur in the 
Hartree-Fock phase diagram in the parameter range for U and 6 considered here, 
do not appear in our slave boson calculation. 

In figure 4 we also included the experimental data of Cheong ef a1 [7l who 
measured the neutron scattering cross section of La,-,Sr,CuO, and found incom- 
mensurate medium-range magnetic order with a wavevector (Q,,s) for I 2 7%. 
Assuming that the hole doping is equal to the concentration of Sr, we see that the 
two experimental points are in qualitative agreement with the slave boson theory. 
Indeed in this part of the phase diagram, for U / i  E 4 and 6 2 7%. our mean field 
approach predicts ( 1 , O )  ordering with values o l  Q, in qualitative agreement with 
the experiment. 

For small doping, Le. in the ( 1 , l )  regime, the Fermi surface consists of one 
hole pocket located arond ( x / 2 ,  x / 2 ) ,  the size of which increases upon doping. At 
the ( 1 , l )  to (1,O) transition it changes completely to become an asymmetric stripe 
which runs around one half of the magnetic Brillouin zone; this stripe is infinitely 
long in one direction and not in the other. Nevertheless one has to keep in mind 
that the spiral states associated with all the Q = (&Q,,&Q,) are degenerate in 
energy. This restores the expected symmetry of the Fermi surface. Other evidence for 
incommensurate magnetic order are provided by quantum Monte Carlo calculations 
on linite lattices [Z]. However, due to the small size of the lattices that have been 
studied and the relatively large temperature, it is quite unlikely that incommensurate 
long-range order can be detected from the simulations, in contrast to short-range 
order. Indeed it is found, for U - 41, that the position of the maximum of the 
magnetic structure factor moves away from ( x ,  r) to the side of the Brillouin zone 
upon doping, which is consistent with our slave boson results. According to exact 
diagonalization results the same behaviour occurs in the t-J model, even though it 
is not quite clear whether the maximum of the magnetic structure factor moves away 
from ( x , x )  for arbitrary small doping, or only when it exceeds a certain threshold 

Figure 5 displays the magnetization as a function of the doping for U/f = 4, 
8, 12 and 18. The linear behaviour of m in the ( 1 , O )  domain, which was already 
observed for U / t  = 4 [24], is also present for the other values of U. One can 
also remark that the jump in m at the transition increases as a function of the 
interaction strength. The ferromagnetic behaviour, i.e. m = n, is not seen at all 
in this calculation. Therefore the tendency of MF calculations to overestimate the 
amplitude of the spin-spin correlation functions is noticeably reduced with respect to 
HF. 

Figure 6 shows the density of doubly occupied sites as a function of the doping 
for U / i  = 4, 8, 12 and 18. The transition from the ( 1 , l )  to the ( 1 , O )  domain is 
accompanied by a discontinuous increase in d2 .  The size of the jump is lowered by 
increasing U ,  

Figure 7 shows the Lagrange multiplier p as a function of the doping for U/f = 4, 
8, 12 and 18. In the AF state, B plays the role of the magnetic gap. At half-filling, 
P grows like U / 2 t  for large U .  However, it is quite remarkable that p is very 

WI. 
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Figure 5. Magnetization against hole concentration for V/i = 4, 8, 12 and 18. ;::::E 3 
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Fkure 6. Density of doubly occupied sites against hole mncenlration. Shown are the 
resuits in the pramagnelic phase for U / i  = 4 (A); in the spiral phase for V / t  = 4 
(E), 8 (C). 12 (D), 18 (E). 

strongly suppressed upon doping, rapidly becoming of order t, before vanishing at 
the paramagnetic transition. 

0.00 0.10 0.20 0.30 
6 

Figure 7. Lagrange multiplier @ (see text) against hole Concentration for U l t  = 4, 9, 
12 and 18. 

Figure 8 shows the magnetic gap, defined as 4 = min(Ek+ - E,-) for positive 
(E,, - E,- ) and zero elsewhere, as a function of the density for U / t  = 4,8, 12 and 
18. Whereas A is well approximated by U at half-filling, particularly for the largest 
values of U, it is very strongly reduced upon doping, vanishing already in the (1,l) 
domain. It then suddenly reappears at the (1,l) to ( 1 , O )  transition. This has to be 
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Mognetic Gap 

16.0 

12.0 

8.0 

4.0 

0.0 
0.00 0.05 0.10 0.15 0.20 
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Figure 8 Magnelic gap A againu hole ancentration for U / t  = 18 (A), 12 (B). 8 (C), 
4 (D). The jumps mrrespond to lhe lransilion f” ( ] , I )  to ( 1 , O )  spiral slates. 

contrasted with the HartreeFock result where, for large U, one finds AHF - Un, 
even for finite doping. This has a particularly strong influence on the band width. The 
latter is shown in figure 9 as a function of the density for U / t  = 4,  8, 12 and 18. For 
the sake of clarity we consider the lower magnetic SUbbdnd only, even though the two 
bands overlap when the magnetic gap vanishcs (see figure 8). We see at half-filling 
that increasing U reduces the hand width, which indeed scales with 1 6 t 2 / U  (= 45 
where J is the exchange constant). Upon doping, the band width increases strongly 
up to the order of several 1. In the I-J model, exact diagonalization calculations for 
the system doped with one hole have shown the quasi-particle band width to be 25, 
with a dispersion relation well reproduced (up to a constant term) by ( J / S ) t :  - J 
[27, 281. A similar dispersion relation for the quasi-particle is also obtained in our 
approach for large U and small doping. However, on doping, both methods show a 
drastic increase of the band width and a qualitative change of the dispersion relation 
towards the bare hopping renormalized by an cffective mass [29]. 

~ ~. ~~~ ... . . ~  . . 0.00 0.10 0.20 030 
6 

Figure 9. Band widlh in !lie spiml stale against hole mnmnlralion Cor U / $  = 4,  8, 12 
and 18. 

The strong reduction of the magnetic gap on doping also affects the density of 
states. The spectral weight carried by the upper magnetic subband will gradually be 
transferred to the lower subband on doping. For instance, for (I = 121, we are left 
with one single band for 6 2 15%. The transfer of spectral weight from the upper to 
the lower Hubbard band upon doping has been seen using the exact diagonalization 
method [U]. However, even though the upper Hubbard band is affected by doping, 
it always carries a finite spectral weight, contraly to our mean-field approach. One 
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expects to retrieve the full contribution of the upper Hubbard band from a proper 
calculation of the Gaussian fluctuations [19]. 

4. Conclusion 

We applied the slave boson mean-field approach, first introduced by Kotliar and 
Ruckenstein [18] and made spin-rotation invariant by Li et a1 [17], to spiral magnetic 
states in the Hubbard model. The phase diagram is found to consist of four regions: 
at half-filling the ground state is antiferromagnetic. For arbitrary small doping we 
obtain a (1,l) spiral state up to a critical doping at which the  system undergoes a 
first-order phase transition to a (1,O) spiral phase. Increasing the doping further 
drives the system through a second-order phase transition into the paramagnetic 
state. In the range of interaction strengths we considered (U < 20t) we did not 
obtain ferromagnetism. We compared our ground state energies with quantum Monte 
Carlo simulations [24] and with exact diagonalization results and obtained very good 
agreement even though the deviations were found to increase for larger interaction 
strengths. Part of this agreement comes from allowing for spiral states, as they lead to 
a substantial lowering of the ground state energy as compared to the antiferromagnetic 
state. We have also shown that the slave boson mean-field theory yields a drastic 
improvement of the Hartree-Fock weak-coupling results, particularly away from half- 
filling. The comparison between the spiral wavevcctors that we obtained and the 
experimental data from neutron scattering experiments on La,-,Sr,CuO, [7], which 
exhibit incommensurate medium range magnetic order, shows qualitative agreement. 
Moreover it turns out that the magnetic gap is very strongly affected by doping, 
particularly for large U, and is even seen to vanish for rather small doping (- 10%). 
As a consequence one obtains a transfer of spectral weight from the upper to the 
lower band upon doping. 
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